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E F F E C T  O F  T H E  P A R A M E T E R S  OF  T H E  B I A X I A L  F I E L D  O F  R O C K  P R E S S U R E  

ON T H E  S H A P E  O F  T H E  F R A C T U R E  Z O N E  F O R M E D  B Y  A N  E X P L O S I O N  

OF  A C Y L I N D R I C A L  C H A R G E  I N  A B R I T T L E  M E D I U M  

P. A. M a r t y n y u k  and E. N. Sher UDC 539.375+622.235 

The effect of the biazial field of external rock pressure on the deformation of the fracture zone 
formed by radial cracks in an elastic-brittle medium is studied. We consider cylindrical charges 
that are rather thin compared to the diameter of the ezplosive borehole. This allows one to 
ezclude the grinding zone from consideration. At the initial moment of time, the system of 
emerging cracks originating at the boundary of the circular hole is assumed to be symmetric. 
To solve the problem, we use singular integral equations and the fracture criterion ~ro. The 
propagation trajectories of the system cracks are calculated in the quasistatic approzimation in 
a step-by-step manner in relation to the parameters of the ezternal compressive stress field. 
Two ideal variants of loading of the crack system are analyzed. In the first variant, gaseous 
detonation products penetrate into cracks, and the pressure in the ezplosion cavity and the 
cracks instantaneously equalizes. In the second variant, gases do not penetrate into the cracks 
of the system. The fracture zone is shown to become an ellipse whose long azis is oriented in 
the direction of the largest compressive stress in magnitude acting at infinity. The effect of the 
variants of loading of the crack system on the shape and dimensions of the deformed fracture 
zone is evaluated. 

In describing the fracturing action of an explosion in a solid medium, use is usually made of zone 
fracture models [1-3] that contain three zones in the general case: a grinding zone directly adjacent to the 
HE charge, where the medium is considered a sand medium and the stress state in it is determined by the 
Coulomb law, a zone of column elasticity formed by a system of radial cracks, and an outer elastic-medium 
zone. As a rule, the external stress field in the zone models is given by one parameter,  namely, the counter 
pressure; in view of this, in describing a camouflet explosion of a concentrated or cylindrical charge, the 
fracture zone, i.e., the zone of radial cracks, is shaped like a sphere or an infinitely long cylinder by virtue of 
the symmetry. It is of interest to trace the effect of the parameters of the external stress field on the shape of 
the fracture zone, where the external field is prescribed by stresses p and q that act at infinity in orthogonal 
directions. We consider the planar case, i.e., a camouflet explosion of a cylindrical charge. The cylindrical 
charge is assumed to have a rather small radius (r0 < R, where R is the radius of the borehole). This allows 
us not to consider the grinding zone. Instead of the other two zones, we analyze the solution of the elastic 
problem of the stress state of an elastic plane with a system of smooth cuts-cracks issuing from the boundary 
of a circular hole. We use here the same notation as that used in [4]. We dwell briefly upon the basic aspects of 
problem formulation and upon the assumptions used. To derive the solution, the method of singular integral 
equations was employed [5, 6]. 

Q u a s i s t a t i c  F o r m u l a t i o n  of  t h e  P r o b l e m .  We consider an isotropic elastic plane containing N 
smooth curvilinear cuts issuing from a circular hole of radius R. It is assumed that uniform compressive 
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stresses of intensity p and q act at infinity in two mutually orthogonal directions. Each cut Lk (k = 1, N) 
is referred to its local rectangular coordinate system xkOkYk (Fig. 1), and the cut 's  shape is given by the 
parametric equation 

tk = wk({) = xk({) + iyk(~) (1r -< :,  t~ e Lk) 

in this coordinate system and by the equation Tk({) = eiakwk({) + z ~ in the basic coordinate system, where 
ak is the angle between the positive directions of the axes Oz and Okzk, (z~; y0) is the origin of the local 
coordinate system in the basic coordinate system; here the left end of each cut is found for { = - 1  and reaches 
the hole's boundary. 

If one specifies the normal and tangential stresses 

• " • p~ (tk ELk ,  k 1, N )  O.nk -I. t O . r k  ~ .  - -  

where  the superscripts plus and minus refer to the upper and lower edge of the cut,  the solution of the first 
elastic problem reduces to finding the solution g~(~) of a system composed of N complex singular integral 
equations [6] 

N 1 Skn(~,r/)g~(~)] d~ = Pn(r/), 171 ~< 1 (n = 1 , g ) .  : -  E f [R,.(~,~)g~(~)+ (:) 271" k=l_  1 

Here g~(~) = g'k(tk)w~(~), g~(tk) is the  derivative of the displacement j ump  

d 
dt~ [(~k + i~k) + - (~k + i . k ) - ]  = i ( :  + 2 )  

ae = 3 - 4v, u is the Poisson coefficient (planar deformation), and # is the shear modulus.  Expressions for 
the kernels of integral equations (1) and the right-hand sides of these relations are given in [4]. The function 
Pn(r/) depends on the shapes of the cuts, p~ , p, q, and a0, where a0 is the pressure acting in the hole. 

It is assumed that  N is an even number.  This limitation is of a purely technical character, because in 
this case, the problem possesses the property of central symmetry. Using the symmetry,  one can change over 
to a system of N/2 equations similar to system (1) with the kernels 

R*k,(~, 77) = Rk,~(T~, Tn) - Rk,( -Tl , ,  T,),  

S;n(~, rl) = Sk,(Tk, T~) - Skn(--Tk, T,,), k, n = 1, g /2 .  

It is known that  the components  of the stress tensor have a root singularity at the crack tips, and, therefore. 
we search for the solution of the system in the form g~(~) = ~k(~)/k/1 -~2 .  Applying Gauss quadrature 
formulas [5, 6] and the symmetry  property, we derive the following system of n(N/2  - 1) complex linear 
algebraic equations from (1): 
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NI2 NI2 
~_,~_,[R*kj(~i,,,~)~t(~i)+S~,j(~i,,m)~ok(~)]=2nPi(rl,,, ) ( j = I , N I 2  , m = l , n - 1 ) .  (2) 
k = l  i = 1  

Here n determines the order of approximation of the solution, and 

9 r m  
=cos  (2i-t)2n , =cos n ( m = l . n - t )  

are the zeros of the Chebyshev polynomials of the first and second kind T.(~) = cos (n cos ~) and U . - l ( , )  = 

sin (n cos , ) / r  - ,2,  respectively. Additional conditions that  close system (2) are those from [6] 

v k ( - t )  = o, k = 1, N/2 ,  (3)  

which ensure finiteness of displacements at the left-hand ends of the cuts. 
The major characteristics of cracking theory, which completely determine the stress field in the vicinity 

of the crack tip, namely, the stress intensity factors kl and k2 for the singularity (2r) -1/2 (r/l ( (  1, where l 
is the length of the crack), are given by the formula [6] 

~ok(1) 
klk - ik2k = (4) 

where 
n 

~k(1) = 1 ~--~(_1)1~/:(~1) cot ~r(2j - 1) 1/--~1 " a'(2j - 1) 
rt j=l  4n ; V/~(-1) = n ( -1) :+"~ot(~/ ) tan  4n ' 

via the solution of system (2) and (3) for the right-hand crack tip. 
To construct the crack propagation trajectories, we use the fracture criterion a0 [5] according to which 

any crack develops in a plane the normal pressure on which is maximum. This direction is specified by the 
angle ~.,  which is reckoned from the positive direction of the tangent drawn to the crack tip and is given by 
the expression 

k, - + ski 
tg, = 2 arctan (5) 

4k2 

With the singularity (2r) -1/2 in the expansion for aoo, in the vicinity of the crack tip at t~ = tg,, the coefficient 
K1 along this direction is specified by the expression 

1 + 8g], 3~/kl ~ 

witk the use of which the ultimate-equilibrium condition is determined by the equality Kx = Klc/x/~, where 
Kit is the critical value of the stress intensity factor. In addition, we assume that ,  for ki ~ 0, the crack does 
not develop, i.e., its sides are superimposed. 

The computa t ion  scheme of the quasistatic development of a system of cracks is as follows. At each 
step of crack propagation, the corresponding problem (2) and (3) is solved, and the stress intensity factors 
k + and k+k (k = 1, N/2 ) are found at the tip of each crack according to formulas (4). After that,  tg.k and 

K~ i), which allow one to establish the shape of a growing crack, are determined by formulas (5) and (6) [6, 
7]. Using the formula [8] 

v0(1 -- e-~~ f~ > 0, K1 > 0, ao = const, 

= K---2-1 - 1, 

we find the velocities for each crack at a given moment of t ime and determine the increment step 5k for them 
for a time lapse At  = ht2R/vo, where ht is the parameter that  changes the step in time, to calculate their 
trajectories in the form 

5k = vkAt/R = 2htvk/vo, k = 1, N/2. 
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Thus, we construct quasistatic trajectories of crack growth. Quasistatics means that at every step of 
crack propagation only the variation of the local stress field in the vicinity of the crack tip, which is caused 
by crack propagation and its curving, is taken into account, and the effect of dynamic factors is ignored. 
A circumstance that favors this approach is the results of comparison of the calculated shapes of the crack 
trajectories with experimental shapes obtained in wedging of Plexiglas specimens in which the velocities of 
crack growth were of the order of 300 m/sec. The calculated trajectories are in satisfactory agreement with 
the experimental ones [9]. 

In implementing a step-by-step construction of crack trajectories, an Mgorithm for pressure 
recalculation in a hole is required. For gases in an explosive cavity, we adopt the law of pressure variation 
according to a two-chain adiabat of the Jones-Miller type [10] with adiabatic indices 71 = 3 and 72 = 1.27 in 
the form 

p ( v )  = /v00  2 (7) 
, v > v . ,  

where V. = k2V00 and A = k -3'46. The number k, which characterizes the point of transition from index 71 to 
72, is found based on the following argument. Any industrial HE is defined by the following main parameters: 
qHE is the specific energy (in kcal/kg), p is the density (in kg/m3), and ~ is the gas release (in liter/kg). Some 
portion of the energy of an HE charge is carried away by the shock wave. We denote the portion of the charge 
energy that is spent on deformation of the elastic medium by , /(0 < ? ~< 1). Equating this energy to the work 
of gases performed up to V = Vk, which corresponds to pk = l0 s Pa, per unit length of the charge, we obtain 

v= vk / / 1 , 
,7 opqHr-- p(V)dV+ (p,V,--pkVk ), (S) 

v~ v. 

where p, = pook -6, V, = k2Voo, Pk = Pook-3"46(o "1"27, Vk = (oVoo, (0 = (Po, and po is in g/cm 3. 
Using these relations, we write Eq. (8) in the form 

k-4 _ k-3.46 oO. 7] 
71pqiir = p/ck3"46~ "27 [0.5(1 - k -4) + ~ .j. (9) 

After Eq. (9) is solved, we find the value of k entering the adiabat (7). Knowing k and the gas release ~, we 
find p00 = l0 s k 3"46 ~0 L27 Pa. For example, for TNr, in accordance with the handbook [11], q}IE = 710 kcal/kg, 

= 750 liters/kg, and p = 103 kg/m3; then we obtain from Eq. (9) k = 1.96 and P00 = 46- 10 s Pa for r I = 1 
and k = 1.29 and p00 = 10.8 �9 10 s Pa for r I = 0.5. 

Basheev et al. [4] considered two limiting variants: the absence of tamping and immobile tamping, 
which corresponds to the charge length Lz ~ co. Gas outflow is taken into account in the quasisteady 
approximation. Two ideal cases were studied: 

(1) detonation products do not penetrate into cracks, i.e., the normal stresses at the boundary of a 
circular hole are art  = -p(V), where p(V) is determined by equality (7); 

(2) an instantaneous redistribution of the gas pressure in the cavity and the cracks according to the 
adiabat occurs. 

In the second case, where gases penetrate into cracks at a0 = p0 = p0 (k = 1, N/2), we use the following 
approximating formulas for the crack volume per unit length of the charge: 

N/2 
V=TrR24(1-tfi) 2 ~-~(pO+pok)Lk(bl+b2Lk), pok_p+q p - q  (~" 2ak), (10) N 2 ~ cos - 

k=l 

where E is the elasticity modulus df the medium, Lk = l j R  is the dimensionless length of the kth crack. 
bl and b2 are coefficients that depend on the number of cracks (their values are given in [4]), and a k is the 
angle of inclination of the chord joining the ends of the kth crack to the Ox axis. Formula (10) was derived 
under the assumption that the cracks are rectilinear and have the same length. In calculations, we used the 
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length of the chord that joins the cracks' ends as the length of a crack. In addition, if any crack from the 
system stopped, the calculation continued with the initially chosen N, i.e., the coefficients bl and b2 remained 
unchanged�9 A detailed description of the algorithm for pressure recalculation and the necessary formulas are 
given in [4]. We note that in the case of symmetry (p = q), the size of the radial-crack zone in the first case 
is approximately one order of magnitude smaller than in the second case, where gases penetrate into cracks. 
However, it is easier to reach the required accuracy in the second case, i.e., the solution converges faster to an 
accurate solution as the number of nodal points n increases, which is associated with the fact that the load 
is equal along the crack length�9 

R e s u l t s  o f  C a l c u l a t i o n s  of  C r a c k - Z o n e  D e f o r m a t i o n  and  Ana lys i s .  We assume that after the 
charge detonates, the original system containing an even number of rectilinear incipient cracks of length 
l0 = 2R is formed on the borehole walls. Thus, at the initial moment of time there is a system of N rectilinear 
cracks that are uniformly distributed over a circle. The position of this system relative to the compressive 
stresses at infinity is determined by the angle a l  (Fig. 1). Gases are assumed to penetrate into cracks. TNT 
served as an HE, and half of the HE energy was assumed to be carried away by the shock wave. 

In numerical calculations, we used data that are characteristic of sandstone and the following initial 
parameters: as = l0 s Pa, which is the limit of compressive strength, E = 3 �9 10 l~ Pa, v = 0.3, KIc = 
3 MPa�9 1/2, _R = 0.05 m, a0 = 1, v0 = 650 m/sec, p = 103 kg/m 3, r0 = 0.019 m, L,  = 5 m, qHE = 710 kcal/kg, 

= 750 liters/kg, r /=  0.5, k = 1.29, and p00 = 10.8.10 s Pa. In this formulation, this choice of the parameters 
of the charge radius r0 and its length allows one to calculate with sufficient accuracy the motion of cracks 
until their stoppage. Calculations were performed for N = 2-10. Below, we present results that correspond to 
N = 6. If p : q = q0, the cracks propagate rectilinearly by virtue of the symmetry. We present values of R0, 
i.e., finite dimensions of the radial-crack zone that were derived for various values of the counter pressure q0: 

-q0 = 5.0, 10.0, 20.0, 25.0 MPa, 

Ro/R = 138, 82.3, 36.5, 22.0. 

To illustrate how the system of cracks changes the shape of the fracture zone, we give thorough 
calculations for N = 6 for various p and q that are different in magnitude from the chosen values of p by 
the amount 4-10 % and a l  = 0 and a l  = 7r/6. This made it possible to obtain the maximum dimensions 
of the crack zone a0 and b0 for various p and q in two characteristic mutually perpendicular directions. The 
final dimensions of such zones depend on the number of cracks, which is rather large in these zones under 
real conditions, but the qualitative behavior of the deformation of the fracture zone by the system of cracks 
is described by the presented calculations in relation to the ratio q/p, because the basic special features of 
formation of a crack zone remain the same for N varying from 2 to 10. 

Figure 2a shows crack trajectories for p = - 1 0  MPa, q = -10.7  MPa, and as = 0, 10, 20, 30, 40, 
and 50 ~ (solid curves) and a section of a circle of radius Ro/R = 82.3 and a segment of an ellipse with semi- 
axes ao/R = 136 and bo/R = 56.5 (dashed curves). Figure 2b shows similar trajectories for p = - 1 0  MPa. 
q = -9 .5  MPa, ao/R = 61, and b'o/R = 134�9 It is seen that, for p ~ q, the zone fractured by a system of cracks 
can be bounded by an ellipse that is completely determined by the parameters a0 and b0, because if the initial 
system of cracks is rotated by any angle a l ,  the cracks are inscribed fairly exactly in this ellipse�9 A similar 
picture is shown in Fig. 2c, where crack trajectories are calculated for p = - 2 0  MPa and q = -21  MPa and 
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TABLE 1 

~, liter/kg P0o, MPa k Ri/R R2/R R3/R 

700 1872 1.42 76.0 30.5 14.6 
750 1082 1.29 82.3 36.5 22.0 
800 635 1.08 88.5 41.5 27.7 

Ro/R = 36.5, ao/R = 60, and bo/R = 23. Indeed, as was noted in [4], positioned in the field of compressive 
stresses, this system of cracks tends to propagate in the direction of the largest compressive stress in magnitude 
acting at infinity, slows down, and traverses shorter distances in the perpendicular direction. 

Figure 3 shows a typical dependence of the variation of the velocities of the cracks in the system on 
their length for p = , 2 0  MPa, q = -21  MPa, and ai  = 20 ~ Curves 1-3 correspond to the crack number 
counted off counterclockwise from the horizontal axis. In the initial period of motion, the cracks seemingly 
speed up, and this is characteristic of all the calculations where the gas enters the cracks. 

Figure 4 shows basic calculation results for the parameters of the fracture ellipse ao/R and b0/R, 
in relation to the ratio q/p (curves 1 and 2 refer to p = -10  and -20  MPa, respectively). We note that, 
for q/p ~ t . t ,  the ratio ao/R ..~ 1.75, and bo/R decreases as the absolute value of p grows; for example, 
as p varies from - 5  to - 2 5  MPa, bo/R = 0.63-0.18. Thus, with the ratio q/p > 1 unchanged, the ellipse 
becomes narrower with increasing Ipl, i.e., the value of bo/ao decreases. In the opposite case (q/p ~ 0.9), as 
IM increases, the value of bo/R increases weakly, whereas ao/R decreases. In this case, with increase in the 
absolute value of p, the ellipse that  is fractured by the system of cracks expands in the vertical direction, i.e., 
the ratio b0/a0 ~ 3-8 as p varies from - 5  to -25  MPa. We note that a marked change in this ratio begins 
at IM > 2o MPa. If p = ( - 5 ) - ( - 2 0 )  MPa, the ratio bo/ao = 3-3.8 and the ratio ao/bo = 3-4 for q/p = 0.9 
and 1.1. Thus, there is a strong dependence of the shape of the zone fractured by the system of cracks on 
the relative difference in the compressive stresses acting at infinity. For example, for (q - p)/p .~ +0.1, the 
circle becomes an ellipse with the ratio of semiaxes 3-4 for p = ( - 5 ) - ( - 2 0 )  MPa, where the larger semiaxis 
is directed toward the largest compressive stress in magnitude. 

The area of the fracture ellipse St! referred to the area of the circle Sc (for p = q) is shown as a function 
of q/p by curves 3 and 4 in Fig. 4 (p = - 1 0  and -20  MPa). It is worth noting that,  as follows from Fig. 4, 
the maximum volume fractured by the system of cracks does not obey the condition p = q, but is attained 
on the left and on the right of p = q, being larger on the left (Iql < IM). For example, for p = -10  MPa 
and q = -9 .3  MPa, the area of the ellipse is larger than the area of the circle by approximately 24% for 
p = q = -10  MPa and by 13% for q = -10.4 MPa. As IPl increases, the values of the relative maxima 
decrease, and their positions approach the position of p = q. 

Naturally, if the specific energy of the HE is retained and the gas release ~ varies, the zone fractured 
by radial cracks should grow with increasing ~. Table 1 lists values of ~, p00, and k [the parameters of the 
adiabat (7)] found by Eq. (9) and relative radii of the radial-crack zone Ri/R (i = 1, 2, 3) that correspond to 
p = q = -10,  -20,  and -25  MPa and were calculated according to the given scheme for qHE = 710 kcal/kg 
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TABLE 2 

p, MPa q/p 

-2.50 0.80 
-2 .50 0.90 
-2.50 1.00 
-2.50 1.I0 
- 2 . 5 0  1.20 

ao/ R 

8.5 

9,1 

9.8 

10.6 

11.2 

bo/R 

12.7 
11.2 
9.8 

8.7 
7.9 

ao/bo 

0.67 
0.81 

1.00 

1.22 
1.42 

bo / ao 

1.49 

1.23 
1.00 

0.82 
0.70 

and r /= 0.5. 
It follows from the very formulation of the problem that the entire deformation of the fracture zone is 

determined by the quantity p-q .  One can expect that the effect of such a strong dependence of the deformation 
of the fracture zone on the ratio q/p is associated only with the assumption that the gases penetrate into 
the cracks. Indeed, cracks that propagate in a direction close to normal in relation to the direction of action 
of the maximum compressive stress attain the limiting equilibrium faster and slow down under the action of 
the external field, but this influence is not so strong. The effect of long cracks on short cracks via pressure is 
stronger. Long cracks have a large volume and their development rapidly decreases the pressure in the cavity, 
which additionally decelerates the propagation of short cracks. Therefore, long cracks will mainly develop, 
while the fracture zone will expand in the direction of the maximum compressive stress acting at infinity. 
Such strong deformation of the fracture zone occurs owing to this mechanism of gas volume redistribution. 

We performed additional calculations under the assumption of gas nonpenetration into the cracks of 
the system to clarify the effect of gas penetration on the degree of deformation of the fracture zone. Figure 
5 shows a picture of calculated crack trajectories that is similar to those depicted in Fig. 2, for r0 = 0.03 m, 
p = -2 .5  MPa, q = - 3 . 0  MPa, and the previous values of the remaining parameters. The dashed curves refer 
to arcs of the circle with R0 = 9.8R (p = q = -2 .5  MPa) and the ellipse with the semiaxes a0 = 11.5R and 
b0 = 8R. In this variant of loading, ao/bo ~ 1.4 if q is different from p by 20%. Table 2 shows calculation 
results that give an idea of the ellipse's dimensions versus the ratio of p and q. 

If the gaseous detonation products do not enter the cracks, then in a first approximation where q differs 
comparatively little from p the final state of the deformed system of cracks is determined by the mean counter 
pressure, the lengths of the fracture ellipse's semiaxes vary in proportion to IP - ql, and an increment of the 
long semiaxis occurs approximately 2 times faster than for the short semiaxis. 

The results obtained allow one to evaluate the degree of influence of various parameters of the problem 
on the shape and dimensions of the zone of fracture by the system of cracks that develop from the boundary 
of the explosive cavity. 

This work was supported by the Russian Foundation for Fundamental Research (Grant No. 95-01- 
01169). 
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